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Abstract
The similarity between a pair of time series, i.e., sequences of indexed values in time
order, is often estimated by the dynamic time warping (DTW) distance, instead of any
in the well-studied family of measures including the longest common subsequence
(LCS) length and the edit distance. Although it may seem as if the DTW and the
LCS(-like) measures are essentially different, we reveal that the DTW distance can
be represented by the longest increasing subsequence (LIS) length of a sequence of
integers, which is the LCS length between the integer sequence and itself sorted. For a
given pair of time series of length n such that the dissimilarity between any elements
is an integer between zero and c, we propose an integer sequence that represents any
substring-substring DTW distance as its band-substring LIS length. The length of the
produced integer sequence is O(cn2), which can be translated to O(n2) for constant
dissimilarity functions. To demonstrate that techniques developed under the LCS(-
like) measures are directly applicable to analysis of time series via our reduction of
DTW to LIS, we present time-efficient algorithms for DTW-related problems utilizing
the semi-local sequence comparison technique developed for LCS-related problems.
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1 Introduction

A time series is a sequence of discrete objects which are indexed in time order. Due to
the recent developments of sensing technologies and semi-automated M2M commu-
nications, a vast amount of time series data has been rapidly produced in industrial,
financial, medical, and scientific domains.

The most fundamental task in time series data analytics is to compare time series
sequences, and to extract their similarities. The dynamic time warping (DTW ) dis-
tance is a fundamental method to compute a similarity between two time series that
may vary in speed. It is essentially composed of computing an optimal one-to-many
alignment of two time series. Considering one-to-many mappings allows for dynamic
shifts of time points, and it has made DTW one of the most successful algorithms in
all areas of algorithms. Indeed, not only is DTW widely utilized in time series data
analysis [21], but also DTW has been extended to a wide range of other applications
including image processing [22], hand writing matching [27], sign language recog-
nition [14], music retrieval [13], robotics [15, 16], trajectory data analysis [12, 30],
speech recognition [19, 26], and many others.

Consider two time series sequences A and B. For the time being, let us assume
for simplicity that |A| = |B| = n. There is a fundamental dynamic programming
algorithm that computes the DTW distance, together with an alignment achieving the
distance, between A and B in O(|A||B|) = O(n2) time and space [26].While it is pos-
sible to reduce the space-requirement of this dynamic programming method to O(n)

by applying Hirschberg’s divide-and-conquer algorithm [9], no strongly sub-quadratic
time algorithm for computing the DTW distance is known. This is supported by the
conditional lower bound such that, unless the Strong Exponential Time Hypothesis
(SETH) is false, there is no O(n2−ε)-time algorithm for any ε > 0 that computes the
exact value of the DTW distance of two given sequences over 5-letter alphabets [1, 2].
Later, the same conditional lower bound was shown for 3-letter alphabets in the case
where the cost function d satisfies d(a, b) = 1 for any pair a, b of letters [17].

On the practical side, a number of fast heuristic algorithms for DTW have been
proposedby thedatabase community (see [31] for a survey). These algorithms typically
output approximated values for the DTW distance which in many cases suffice for
practical purposes, but, lack theoretical guarantees.

Unlike other sequence comparisonmeasures such as longest common subsequences
(LCS) and edit distance, DTW is not a one-to-one/zero alignment. In addition, the
underlying grid graph for DTW is vertex-weighted, while those for LCS and edit dis-
tance are edge-weighted. Despite these different natures of DTW from those of LCS
and edit distance, interestingly, computing LCS and weighted edit distance of two
sequences of length n can be reduced to computing DTW of two sequences of length
O(n) [1, 17]. Thus, computing the exact DTW distance is at least as hard as for com-
puting LCS and (weighted) edit distance. On the other hand, it is not known whether
computing DTW can be reduced to computing LCS or (weighted) edit distance. These
are most probably why finding an efficient algorithm for the exact DTW distance is
rather challenging, and quite intriguing. Indeed, the first weakly sub-quadratic time
algorithm for the DTW distance, which runs in O(n2 log log log n/ log log n) time,
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was only recently discovered [7], after 40 years from the seminal paper [26]. More
recently, the running time has been improved to O(n2/ log log n) [8].

A few DTW algorithms whose running times depend on other parameters are also
known: Hwang andGelfand [10] showed how to compute the DTWdistance in O((s+
t)n) time, where s and t denote the number of non-zero values in A and B, respectively.
For the case where the minimum non-zero distance is one, Kuszmaul [17] proposed an
algorithm for computing the DTW distance in O(nu) time, where u denotes the DTW
distance between A and B. Very recently, Froese et al. [6] presented a run-length-
encoding (RLE) based algorithm which computes the DTW distance in O(kn + �m)

time, wherem = |A|, n = |B|, and k and � are respectively the RLE sizes of A and B.
In the case where k ∈ O(

√
m) and � ∈ O(

√
n), their algorithm runs in O(k2� + �2k)

time.
When A and B are both binary sequences, it is known that the DTW distance

can be computed in O(n1.87) time [1]. There are other DTW algorithms for binary
sequences, running in O(st) time [11, 20], or in O(k�) time [5]. Very recently, a
surprising O(n)-time solution has been proposed for computing the DTW distance of
binary sequences [18]. In the same paper [18], an O((k + �) log(k + �))-time solution
was also proposed for the DTW distance of binary sequences.

1.1 Reducing DTW to LIS

In a previous version of this paper [25] we presented a new approach for computing
the DTW distance, based on a reduction to the longest increasing subsequence (LIS)
problem.

Ofmanyvariants ofDTWdistance between A and B with respect to the dissimilarity
between the value a at any position i in A and the value b at any position j in B,
d(a, b) = |a − b| or d(a, b) = (a − b)2 seems most typically used. We here adopt a
general dissimilar function dA,B(a, b), instead of such a specific function, but use a
standard convention that the value dA,B(a, b) is rounded to an integer between 0 and
some positive integer c.

In [25] the authors presented how the problem of computing the DTW distance
between A and B can be reduced to computing the LIS of a sequence of O(c2mn)

integers, in O(c2mn) time and space, where m = |A| and n = |B|. The merit of this
method is that it allows us to perform efficient semi-local sequence comparison [28]
between contiguous subsequences of A and B based on the DTW metric, which
further permits us several sophisticated comparisons of the two input sequences in
O(c2n2 polylog(n)) time assuming m = n.(More detailed description of these prob-
lems and their solutions will be given later in this paper). We remark that a direct
application of the standard DP requires O(n3) time for these comparisons.

For long sequences with large m and n, the value of c is often negligibly small and
thus can be regarded as a constant in many cases. In particular, c = 1 always holds
for binary time series such as spike trains and sensor event sequences. In these cases,
the DTW distance is represented by the LIS length of an integer sequence of length
O(mn), or O(n2) when m = n.
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On the other hand, for some applications where c is a relatively large constant, the
c2 overhead in the O(c2mn) complexity may become problematic. Thus, whether one
can reduce this c2 factor has been an intriguing and important question.

1.2 Our Contribution

In the first part of this paper, we present a new, more efficient reduction technique of
DTW to LIS. The main part of our new reduction is to somehow redefine the DTW
distance between any contiguous subsequences of A and B as the maximum possible
weight of a restricted increasing subsequences of a sequence of O(mn) integers each
weighted by an integer between 0 and c, where m and n are the lengths of A and
B, respectively. This weighted integer sequence is transformed into a sequence of
O(cmn) unweighted integers, which essentially has the same property as the weighted
sequence, in a straightforward way. This permits us to speed-up the reduction by a
factor of c, compared to the previous approach [25].

For simplicity, assume m ≤ n. While our new O(cn2) reduction is still less time-
and space-efficiently than the classical O(n2) dynamic programming method, our
new reduction also permits us efficient semi-local sequence comparison with DTW
as in [25]. The semi-local sequence comparison problem was first considered by
Tiskin [28] with LCS. The task for our case is to preprocess input strings A and
B to construct a data structure supporting O(n2) queries of the DTW distance of any
pair of either a prefix of one of A and B and a suffix of the other, or a contiguous
subsequence of one and the entire sequence of the other. There are two naïve solutions
for this problem: The first naïve solution NS1 is to store the input strings A and B
with O(n) space and to apply the dynamic programming method upon query using
O(n2) time each. The second naïve solution NS2 is to precompute a lookup table of
O(n2) space which explicitly stores all the answers for all possible O(n2) queries,
allowing for answering each query in O(1) time. Suppose that c can be treated as
a constant independent of n (and of m). Compared to NS1, our O(n2)-space data
structure supporting O(polylog(n))-time queries achieve exponential speed-up for
answering semi-local DTW distance queries, at the sacrifice of quadratic space usage.
Compared toNS2, our O(polylog(n))-time queries are slower than O(1)-time queries
of NS2. However, a naïve application of the dynamic programming method needs
O(n3) preprocessing time to compute the lookup table of NS2, while our data structure
can be built in faster O(n2 polylog(n)) time. To summarize, our method leads to a
non-trivial time-space trade-off for this semi-local sequence comparison problemwith
DTW.

We further emphasize that, despite the different nature of DTW from that of LCS
or edit distance noted previously, our reduction of DTW to LIS allows us to apply
Tiskin’s semi-local sequence comparison technique, originally developed for LCS-
related problems, directly to DTW-related problems. As such applications, we present
time-efficient algorithms for the circular DTW distance, square root DTW distance,
and periodic DTW distance problems, which can arise in time series data analysis.
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(a) (b)

Fig. 1 a An example of the table of the dissimilarities dA,B (i, j) with |A| = |B| = 4 and an alignment
P = (2, 1) ◦ (2, 2) ◦ (3, 2) ◦ (4, 3) achieving the DTW distance between A[2 : 4] and B[1 : 3], which is
indicated by a polygonal line;bTheweightsw(q) for elementsq in sequence RA,B for the samedissimilarity
function dA,B as (a) with c = 4, where each boxed integer represents w(r(i, j)) (= c − dA,B (i, j)), each

encircled integer representsw(r̃(i, j)) (= c), and sequence P̂ = r(2, 1)◦r(2, 2)◦r(3, 2)◦ r̃(4, 3)◦r(4, 3)
for the same P as a is indicated by a polygonal line

2 Preliminaries

For any sequences S and T , let S ◦ T denote the concatenation of S followed by T .
For any sequence S, we use |S| to denote the length of S and S[i] with 1 ≤ i ≤ |S|
to denote the i th element of S, so that S = S[1] ◦ S[2] ◦ · · · ◦ S[|S|]. A subsequence
of a sequence S is obtained from S by deleting zero or more elements at any position
not necessarily contiguous, i.e., S[i1] ◦ S[i2] ◦ · · · ◦ S[i�] with 1 ≤ � ≤ |S| and
1 ≤ i1 < i2 < · · · < i� ≤ |S|. Any subsequence S[i�] ◦ S[i� + 1] ◦ · · · ◦ S[i�] with
1 ≤ i� ≤ i� ≤ |S| is called contiguous and denoted by S[i� : i�]. A prefix (resp.
suffix) of S is a contiguous subsequence S[i� : i�] with i� = 1 (resp. i� = |S|).

A time series is a nonempty finite sequence. For any pair of time series A and B and
any pair of their elements A[i] and B[ j], let dA,B(i, j) denote a nonnegative integer
that represents the dissimilarity of A[i] and B[ j]. An alignment of A[i� : i�] and
B[ j� : j�] is a sequence P = (i1, j1) ◦ (i2, j2) ◦ · · · ◦ (i|P|, j|P|) of index pairs such
that (i1, j1) = (i�, j�), (ik, jk) with 2 ≤ k ≤ |P| is one of (ik−1 + 1, jk−1 + 1),
(ik−1 + 1, jk−1), or (ik−1, jk−1 + 1), and (i|P|, j|P|) = (i�, j�). The discrepancy
dA,B(P) of this alignment P is defined as the sum of the dissimilarity dA,B(ik, jk)
over all indices k with 1 ≤ k ≤ |P|. The dynamic time warping (DTW) distance
between A[i� : i�] and B[ j� : j�] is defined as the minimum of the discrepancy
dA,B(P) over all alignments P of A[i� : i�] and B[ j� : j�]. See Fig. 1a, in which a
concrete example of the dissimilar function dA,B and an alignment P achieving the
DTW distance are presented.
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For any sequence S of integers, a subsequence of S is increasing, if any element
of the subsequence other than the last one is less than the succeeding element. Any
increasing subsequence S′ of S is [h� : h�]-banded, if S′ consists only of integers
in the range from h� to h�. Any increasing subsequence T of S is maximal, if T is
the only increasing subsequence of S that has T itself as its subsequence. The longest
increasing subsequence (LIS) length of S is the maximum of |T | over all increasing
subsequences T of S. Any increasing subsequence of S that achieves the LIS length of
S is called an LIS of S. The LIS problem introduced above can naturally be generalized
for the case where each integer s in S is weighted by a non-negative integer w(s) as
follows. The heaviest increasing subsequence (HIS) weight of S is defined as the
maximum of w(T ) over all increasing subsequence T of S, where w(T ) denotes the
sum of w(s) over all integers s in T . Any increasing subsequence of S that achieves
the HIS weight of S is called an HIS of S. Note that there is at least an HIS that is
maximal, due to the non-negativity of w(s).

3 Reduction

Let A and B be arbitrary time series, and let c be the maximum of dA,B(i, j) over all
index pairs (i, j) with 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|. This section designs the DTW
distance sequence SA,B for time series A and B, which is a sequence of O(c|A||B|)
integers that can be used to determine theDTWdistance between any pair of A[i� : i�]
and B[ j� : j�] as the [h� : h�]-banded LIS length of SA,B[g� : g�] for certain indices
g�, g�, h�, and h�.

To define the DTW distance sequence SA,B for A and B, we first reduce the DTW
distance problem to the HIS problem, and then to the LIS problem. The outline is as
follows.

The reduction of the DTW distance problem to the HIS problem is done by intro-
ducing a sequence RA,B of |A||B| + (|A| − 1)(|B| − 1) weighted integers, which
are

– integers r(i, j) for all index pairs (i, j) with 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|, each
weighted by c − dA,B(i, j), and

– integers r̃(i, j) for all index pairs (i, j) with 2 ≤ i ≤ |A| and 2 ≤ j ≤ |B|, each
weighted by c.

For any element q in RA,B , let iq = i and jq = j , if q = r(i, j), and for conve-
nience, let iq = i − 0.5 and jq = j − 0.5, if q = r̃(i, j). For any alignment P of
A[i� : i�] and B[ j� : j�], let P̂ denote the sequence obtained from P by replacing each
element (ik, jk)with 2 ≤ k ≤ |P| and (ik, jk) = (ik−1+1, jk−1+1) by r̃(i, j)◦r(i, j)
and each other element (ik, jk) by r(i, j). Hence, for any consecutive elementsq andq ′
in P̂ , all of iq ≤ iq ′ , jq ≤ jq ′ , and (iq ′−iq)+( jq ′− jq) = 1 hold. From this observation,
the length of P̂ is |A[i� : i�]|+|B[ j� : j�]|+1, and hence the sum of the weightw(q)

over all integers q in P̂ is equal to c(|A[i� : i�]| + |B[ j� : j�]| + 1) − dA,B(P). See
Fig. 1b, in which theweightsw(q) for all elements q in RA,B for the same dissimilarity
function dA,B as (a) and sequence P̂ for the same alignment P as (a) are presented.We
will carefully define RA,B by specifying an integer value and occurrence position for
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each element q in RA,B so that any alignment of A[i� : i�] and B[ j� : j�] represents
an [r(i�, j�) : r(i�, j�)]-banded maximal increasing subsequence of RA,B[ f� : f�],
and vice versa. This immediately implies that c(|A[i� : i�]|+ |B[ j� : j�]|+1)minus
the [r(i�, j�) : r(i�, j�)]-banded HIS weight of RA,B[ f� : f�] represents the DTW
distance between A[i� : i�] and B[ j� : j�].

The DTW distance sequence SA,B , which consists of unweighted integers, will be
defined by blowing up each integer in RA,B based on its weight in a straightforward
manner.

3.1 Reduction of the DTWDistance Problem to the HIS Problem

According to the outline explained above, we reduce the DTW distance problem for
the dissimilarity function dA,B to theHIS problem for weighted integer sequence RA,B

by appropriately assigning an integer value and occurrence position to each element
q in RA,B .

For any element q in RA,B , let f (q) denote the index such that RA,B[ f (q)] = q.
For simplicity, we sometimes use f (i, j) to denote f (r(i, j)).

As RA,B , we adopt the one such that each element appears in the “row-wise forward-
backward-alternating” order on the grid arrangement shown in Fig. 1a and each
element is the integer that indicates its rank in the “column-wise forward-backward-
alternating” order shown in Fig. 1b. More formally, we define f (q), q, and w(q) for
any element q in RA,B as follows (see also Fig. 2c for a concrete example).

Definition 1 For any index pair (i, j) with 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|, let
f (r(i, j)) = (i −1)(2|B|−1)+ j , r(i, j) = ( j −1)(2|A|−1)+ i , andw(r(i, j)) =
c − dA,B(i, j). For any index pair (i, j) with 2 ≤ i ≤ |A| and 2 ≤ j ≤ |B|, let
f (r̃(i, j)) = (i − 1)(2|B| − 1) − j + 2, r̃(i, j) = ( j − 1)(2|A| − 1) − i + 2, and
w(r̃(i, j)) = c.

The correctness of our definition of RA,B is guaranteed from the following two
lemmas. The first lemma presents what condition RA,B should satisfy and the second
lemma claims that RA,B satisfies the condition.

Lemma 1 Suppose that a subsequence q ◦ q ′ of RA,B is a maximal increasing sub-
sequence of RA,B[ f (q) : f (q ′)] if and only if all of 	iq
 ≤ iq ′ , 	 jq
 ≤ jq ′ , and
(iq ′ − iq) + ( jq ′ − jq) = 1 hold. Then a subsequence Q of RA,B is an [r(i�, j�) :
r(i�, j�)]-banded maximal increasing subsequence of RA,B[ f (i�, j�) : f (i�, j�)] if
and only if Q = P̂ for some alignment P of A[i� : i�] and B[ j� : j�].
Proof Since RA,B[ f (i�, j�)] = r(i�, j�) and RA,B[ f (i�, j�)] = r(i�, j�), it is
easy to verify that a subsequence Q of RA,B is an [r(i�, j�) : r(i�, j�)]-banded
maximal increasing subsequence of RA,B[ f (i�, j�) : f (i�, j�)] if and only if Q[1] =
r(i�, j�), Q[|Q|] = r(i�, j�), and any contiguous subsequence q ◦ q ′ of Q is a
maximal increasing subsequence of RA,B[ f (q) : f (q ′)]. It is also easy to verify
that Q = P̂ for some alignment P of A[i� : i�] and B[ j� : j�] if and only if
Q[1] = r(i�, j�), Q[|Q|] = r(i�, j�), and any contiguous subsequence q ◦ q ′ of Q
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(a) (b)

(c)

Fig. 2 a The indices f (q) for elements q in RA,B for the same dissimilarity function as Fig. 1a, to
which indices 1, 2, . . . , |RA,B | are assigned in the order indicated by a winding arrow, where each boxed
index represents f (r(i, j)) and each encircled index represents f (r̃(i, j)); b The integers of elements
q (= RA,B [ f (q)]) in RA,B , to which integers 1, 2, . . . , |RA,B | are assigned in the order indicated by a
winding arrow, where each boxed integer represents r(i, j) and each encircled integer represents r̃(i, j);
c Sequence RA,B , in which the alignment P in Fig. 1a corresponds to the [1 : 18]-banded increasing
subsequence RA,B [8] ◦ RA,B [9] ◦ RA,B [16] ◦ RA,B [20] ◦ RA,B [24] = 2◦9◦10 ◦12◦18 of RA,B [8 : 25]

satisfies that all of 	iq
 ≤ iq ′ , 	 jq
 ≤ jq ′ , and (iq ′ − iq) + ( jq ′ − jq) = 1 hold. The
lemma follows from the above facts. ��
Lemma 2 A subsequence q ◦ q ′ of RA,B is a maximal increasing subsequence of
RA,B[ f (q) : f (q ′)] if and only if all of 	iq
 ≤ iq ′ , 	 jq
 ≤ jq ′ , and (iq ′ − iq) + ( jq ′ −
jq) = 1 hold.

Proof From Definition 1, it is easy to verify that a subsequence q ◦ q ′ of RA,B is
increasing (i.e., both f (q) < f (q ′) and q < q ′ hold) if and only if both 	iq
 ≤ iq ′
and 	 jq
 ≤ jq ′ hold. On the other hand, (iq ′ − iq) + ( jq ′ − jq) ≥ 1 holds for any
distinct elements q and q ′ in RA,B with 	iq
 ≤ iq ′ and 	 jq
 ≤ jq ′ . Furthermore, if
(iq ′ − iq)+ ( jq ′ − jq) > 1, then there exists at least an element q ′′ in RA,B with 	iq
 ≤
iq ′′ , 	 jq
 ≤ jq ′′ , 	iq ′′ 
 ≤ iq ′ , and 	 jq ′′ 
 ≤ jq ′ such that (iq ′′ − iq) + ( jq ′′ − jq) = 1.
These facts immediately yield the lemma. ��

Now we have the following theorem, presenting a reduction of the DTW distance
problem to the HIS weight problem.

Theorem 1 The DTW distance between A[i� : i�] and B[ j� : j�] can be calculated
as c(|A[i� : i�]| + |B[ j� : j�]| + 1) minus the [r(i�, j�) : r(i�, j�)]-banded HIS
weight of RA,B[ f (i�, j�) : f (i�, j�)].
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Proof Recalling that there exists an [r(i�, j�) : r(i�, j�)]-banded HIS of RA,B

[ f (i�, j�) : f (i�, j�)] that is maximal, the theorem follows from Lemmas 1 and
2, together with the outline of our reduction mentioned earlier. ��

Since q < r(1, j�) ≤ r(i�, j�) for any element q in RA,B with f (i�, 1) ≤
f (q) < f (i�, j�), the resulting Theorem 1 after replacing f (i�, j�)with f (i�, 1) still
holds. Similarly, f (i�, j�), r(i�, j�), and r(i�, j�) in the theorem can respectively be
replaced with f (i�, |B|), r(1, j�), and r(|A|, j�), to eventually obtain the following
corollary.

Corollary 1 The DTW distance between A[i� : i�] and B[ j� : j�] can be calculated
as c(|A[i� : i�]| + |B[ j� : j�]| + 1) minus the [r(1, j�) : r(|A|, j�)]-banded HIS
weight of RA,B[ f (i�, 1) : f (i�, |B|)].
Remark Theorem 1 and Corollary 1 hold also for any dissimilarity function dA,B such
that dA,B(i, j) is an arbitrary nonnegative real number, because the condition that
dA,B(i, j) is an integer is not used to derive them.

3.2 Reduction of the HIS Problem to the LIS Problem

To complete the reduction of the DTW distance problem for the dissimilarity function
dA,B to the LIS length problem for the DTW distance sequence SA,b, we reduce the
HIS problem for RA,B to the LIS problem for SA,B . This is done in a straightforward
manner, in whichwe transform RA,B to SA,B by replacing each element q in RA,B with
the sequence Sq of w(q) consecutive integers starting from 1, if q = 1 (= r(1, 1)), or
just after the last integer of Sq−1, otherwise. Since RA,B consists of |A||B| + (|A| −
1)(|B| − 1) integers each weighted by an integer between 0 and c, the resulting SA,B

consists of O(c|A||B|) unweighted integers. Formally, the DTW distance sequence
and its auxiliary arrays, providing the indices corresponding to f (i, 1), f (i, |B|),
r(1, j), and r(|A|, j) in Corollary 1, are defined as follows. See also Fig. 3 for a
concrete example.

Definition 2 For any integer q in RA,B , let g�(q) (resp. h�(q)) be the sum of w(q ′)
over all elements q ′ in RA,B such that f (q ′) ≤ f (q) (resp. q ′ ≤ q). Furthermore,
let g�(q) = g�(q) − w(q) + 1, let h�(q) = h�(q) − w(q) + 1, and let Sq be the
sequence h�(q)◦(h�(q)+1)◦· · ·◦h�(q) ofw(q) consecutive integers. Let the DTW
distance sequence SA,B of A and B be the concatenation SRA,B [1] ◦ SRA,B [2] ◦ · · · ◦
SRA,B [|RA,B |]. As its auxiliary arrays, let G�

A,B (resp. G�
A,B) be the array of |A| indices

G�
A,B[i] = g�(r(i, 1)) (resp. G�

A,B[i] = g�(r(i, |B|)) ) with 1 ≤ i ≤ |A|, and let

H�
A,B (resp. H�

A,B) be the array of |B| indices such that H�
A,B[ j] = h�(r(1, j)) (resp.

H�
A,B[ j] = h�(r(|A|, j))) with 1 ≤ j ≤ |B|.

Lemma 3 The [r(1, j�) : r(|A|, j�)]-banded HIS weight of RA,B[ f (i�, 1) :
f (i�, |B|)] is equal to the [H�

A,B [ j�] : H�
A,B[ j�]]-bandedLIS lengthof SA,B [G�

A,B[i�] :
G�

A,B[ j�]].

123



Algorithmica

(a)

(b)

(c) (d)

Fig. 3 a Values g�(RA,B [ f ]) and h�(RA,B [ f ]) with 1 ≤ f ≤ |RA,B |; b Sequence SA,B ; c Arrays
G�

A,B and G�
A,B ; d Arrays H�

A,B and H�
A,B for the same dissimilarity function dA,B as Fig. 1, where the

alignment P in Fig. 1 corresponds to the [1 : 46]-banded increasing subsequence SA,B [19] ◦ SA,B [20 :
23]◦SA,B [42; 44]◦SA,B [52 : 55]◦SA,B [65 : 67] = 3◦22◦23◦24◦25◦26◦27◦28◦30◦31◦32◦33◦44◦45◦46
of SA,B [19 : 68]

Proof For any element s in SA,B , let f (s) denote the index such that SA,B[ f (s)] = s.
It follows fromDefinition 2 that an increasing subsequence s◦s′ of SA,B[ f (s) : f (s′)]
is maximal if and only if either

– s ◦ s′ is a contiguous subsequence of Sq for some element q in RA,B , or
– s = g�(q) and s′ = g�(q ′) for some maximal increasing subsequence q ◦ q ′ of

RA,B[ f (q) : f (q ′)].
From this, it is easy to verify that T is an [H�

A,B[ j�] : H�
A,B[ j�]]-banded max-

imal increasing subsequence of SA,B[G�
A,B[i�] : G�

A,B[ j�]] if and only if T =
SQ[1] ◦SQ[2] ◦· · ·◦SQ[|Q|] for some [r(1, j�) : r(|A|, j�)]-bandedmaximal increasing
subsequence Q of RA,B[ f (i�, 1) : f (i�, |B|)]. Since |T | = w(Q) due toDefinition 2,
the lemma holds. ��

Corollary 1 and Lemma 3 immediately complete our reduction of theDTWdistance
problem to the LIS length problem as follows.

Theorem 2 The DTW distance between A[i� : i�] and B[ j� : j�] can be calculated
as c(|A[i� : i�]| + |B[ j� : j�]| + 1) minus the [H�

A,B[ j�] : H�
A,B[ j�]]-banded LIS

length of SA,B[G�
A,B[i�] : G�

A,B[ j�]].
It iswell known that the dynamicprogramming (DP) algorithmdetermines theDTW

distance between any subsequences A[i� : i�] and B[ j� : j�] in O((i�−i�)( j�− j�))
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time from scratch. On the other hand, even if c can be treated as a constant, it takes
O((i� − i�)( j� − j�) log log �) time [4] to determine the [H�

A,B[ j�] : H�
A,B[ j�]]-

banded LIS length of SA,B[G�
A,B[i�] : G�

A,B[i�]] from SA,B , where � is the banded
LIS length to be determined. Consequently, as long as we are in the situation where
determining the DTWdistance between any given subsequences A[i� : i�] and B[ j� :
j�] is required, naively using theDP algorithm is better thanmaintaining SA,B to apply
Theorem 2. However, certain kinds of the DTWdistance-related problems are relevant
to the DTW distances between A[i� : i�] and B[ j� : j�] only for restricted pairs of
them, and in such cases, our elaborate representation of the DTW distances by the
banded LIS lengths makes sense, as demonstrated in Sect. 4.

4 Applications

The reduction of the DTW distance problem to the LIS length problem proposed in
Sect. 3 becomes meaningful, when we apply the semi-local sequence comparison
technique for a pair of sequences, developed by Tiskin [28]. Here, by semi-local we
mean that any pair of an arbitrary prefix of one sequence and an arbitrary suffix of
the other or any pair of an arbitrary contiguous subsequence of one and the entire
sequence of the other. This technique was developed so as to be applicable to the
longest common subsequence length problem and guarantees, for our particular case
considering the banded LIS length, existence of the following useful permutation,
which can be constructed efficiently.

Lemma 4 ([28]) For any pair of time series A and B, there exists a permutation
sequence �A,B of integers from 1 to 2|SA,B | such that, for any pair of indices k� and
k� with 1 ≤ k�, k� ≤ 2|SA,B | − 1, min(k�, |SA,B |) −max(0, k� − |SA,B |) minus the
number of indices k with k� + 1 ≤ k ≤ 2|SA,B | and 1 ≤ �A,B[k] ≤ k� is equal to

– the [1 : k�]-banded LIS length of SA,B[|SA,B | − k� + 1 : |SA,B |], if both k� and
k� are less than or equal to |SA,B |,

– the [k� − |SA,B | + 1 : |SA,B |]-banded LIS length of SA,B[1 : 2|SA,B | − k�], if
both k� and k� are greater than or equal to |SA,B |,

– the [k� − |SA,B | + 1 : k�]-banded LIS length of SA,B, if k� ≤ |SA,B | ≤ k� and
k� − |SA,B | + 1 ≤ k�, and

– the LIS length of SA,B[|SA,B | − k� + 1 : 2|SA,B | − k�], if k� ≤ |SA,B | ≤ k� and
|SA,B | − k� + 1 ≤ 2|SA,B | − k�.

Lemma 5 ([28] with any of [29] or [23]) Sequence �A,B in Lemma 4 can be obtained
from SA,B in O(|SA,B | log2 |SA,B |) time and O(|SA,B |) space.

Once �A,B is implemented as the two-dimensional range counting tree [3], in
O(|SA,B | log |SA,B |) time and O(|SA,B |) space, the number of indices k with k�+1 ≤
k ≤ 2|SA,B | and 1 ≤ �A,B[k] ≤ k� for any such pair of indices k� and k� can be
determined in O(log |SA,B |) time.

The following DTW distance-related problems are included in typical kinds of
problems efficiently handled by the semi-local sequence comparison technique. In
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what follows, we assume that any dissimilarity function takes as its value one of
integers from 0 to c with c = O(1), independent of the length of the target pair
of time series. Compared to a naive use of the DP algorithm, our reduction to the
LIS problem allows us to solve the problems asymptotically faster by an almost linear
factor. The drawback of our reduction is its space-inefficiency. TheDP algorithm (with
Hirschberg’s divide-and-conquer technique [9]) requires only linear space, while ours
consumes quadratic space. As a result, the algorithmswewill propose for the problems
based on our reduction technique balance execution speed and space consumption
almost equally.

4.1 The Circular DTWDistance Problem

Given a pair of time series A and B with |A| ≤ |B|, the circular DTWdistance problem
consists of determining the minimum of the DTW distance between A′′ ◦ A′ and B
over all partitions of A into a prefix A′ and the remaining suffix A′′, together with an
arbitrary circular shift A′′ ◦ A′ of A that achieves this minimum distance with B. This
problem may arise, for example, when we have a pair of daily temperature data for a
year taken at different locations or environments and want to know the similarity and
phase shift between them.

A naive algorithm solves the problem in O(|A|2|B|) time and O(|A|) space by
determining the DTW distance between A′′ ◦ A′ and B using the DP algorithm in
O(|A||B|) time for each partition of A into A′ ◦ A′′ and taking the minimum. In
contrast, if the two-dimensional range counting tree TA◦A,B for �A◦A,B is available,
then the problem can be solved in O(|A| log |B|) time by determining the DTW
distance between (A ◦ A)[i : i + |A| − 1] (= A[i : |A|] ◦ A[1 : i − 1]) and B
in O(log |�A◦A,B |) time for each index i from 1 to |A| and taking the minimum.
Furthermore, TA◦A,B can be constructed from scratch in O(|A||B| log2 |B|) time.
Consequently, the following holds.

Theorem 3 Given a pair of time series A and B, the circular DTW distance problem
can be solved in O(|A||B| log2 |B|) time and O(|A||B|) space.

4.2 The Square Root DTWDistance Problem

Given a time series A, the square root DTW distance problem is to find an arbitrary
partition of A into a prefix A[1 : i] and the remaining suffix A[i+1, |A|] thatminimizes
the DTW distance between them and to determine this DTW distance. This problem
may arise, for example, when we want to test if a time series can be thought of as the
concatenation of a pair of inexact copies of an unknown pattern.

Similarly to the case of the circular DTW distance problem, a naive algorithm can
solve this problem inO(|A|3) time andO(|A|) space bydetermining theDTWdistance
between A′ and A′′ in O(|A|2) time based on the DP algorithm for each partition of A
into A′◦A′′ and taking theminimum. In contrast, if the two-dimensional range counting
tree TA,A for �A,A is available, then the problem can be solved in O(|A| log |A|) time
by determining theDTWdistance between A[1 : i] and A[i+1 : |A|] inO(log |�A,A|)
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time for each index i from 1 to |A| − 1 and taking the minimum. Furthermore, TA,A

can be constructed from scratch in O(|A|2 log2 |A|) time.

Theorem 4 Given a time series A, the square root DTW distance problem can be
solved in O(|A|2 log2 |A|) time and O(|A|2) space.

4.3 The Periodic DTWDistance Problem

Given a pair of time series A and B with |A| ≤ |B|, the periodic DTW distance
problem is to find an arbitrary quadruple consisting of a nonnegative integer �, a
decomposition B0 ◦ B1 ◦ · · · ◦ B� of B, and indices i� and i� with 1 ≤ i�, i� ≤
|A| that minimizes DTW(A[i� : i�], B), if � = 0, or DTW(A[i� : |A|], B0) +∑�−1

k=1 DTW(A, Bk) + DTW(A[1 : i�], B�), otherwise. Here, DTW(A′, B ′) denotes
the DTW distance between A′ and B ′. This problem may arise, for example, when we
have a time series that can be thought of as from an inexact tandem repeat of a known
specific pattern, and want to cut it into the inexact occurrences of the pattern.

If the two-dimensional range counting tree TA,B for �A,B is available, then the
problem can be solved in O(max(|A| log |B|, |B|)|B| log |B|) time as follows. Let
G be the directed acyclic graph consisting of source vertices ui and sink vertices vi
both with 1 ≤ i ≤ |A| and internal vertices w j , each also denoted by x j+1, with
1 ≤ j ≤ |B| − 1,

– Edges each from a source vertex ui� to a sink vertex vi� with i� ≤ i�, the weight
of which is set to the DTW distance between A[i� : i�] and B,

– Edges each from a source vertex ui to an internal vertex w j , the weight of which
is set to the DTW distance between A[i : |A|] and B[1 : j],

– Edges from an internal vertex x j� to another internal vertex w j� with j� ≤ j�, the
weight of which is set to the DTW distance between A and B[ j� : j�], and

– Edges each from an internal vertex x j to a sink vertex vi , the weight of which is
set to the DTW distance between A[1 : i] and B[ j : |B|].
Hence, each path on G from a source vertex to a sink vertex corresponds to a

distinct quadruple of �, B0 ◦ B1 ◦ · · · ◦ B�, i�, and i�, and vice versa. Furthermore,
the weight of the path is equal to DTW(A[i� : i�], B), if � = 0, or DTW(A[i� :
|A|], B0) + ∑�−1

k=1 DTW(A, Bk) +DTW(A[1 : i�], B�), otherwise, where the weight
of a path on G is the sum of the weights of all edges in the path. This implies that
the periodic DTW distance problem can be solved by finding an arbitrary path on
G from a source vertex to a sink vertex that has minimum weight. If G is available,
then such a path can be found in time linear in the number of edges in G, which is
O(|B|2), and in space linear in the number of vertices in G, which is O(|B|), by
determining the midpoint of the path recursively in a straightforward way. Instead of
constructing G explicitly, we can use the two-dimensional range counting tree TA,B

for SA,B as a data structure that supports O(log |B|)-time queries of the weight of
any edge in G, which allows us to obtain the path in O(|B|2 log |B|) time and O(|B|)
space, excluding space for storing TA,B . Furthermore, TA,B can be constructed from
scratch in O(|A||B| log2 |B|) time and O(|A||B|) space. (Adopting the same strategy,
we can design an O(|A||B|2)-time, O(|B|)-space algorithm based on DP.)
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Theorem 5 Given a pair of time series A and B with |A| ≤ |B|, the periodic
DTW distance problem can be solved in O(max(|A| log |B|, |B|)|B| log |B|) time and
O(|A||B|) space.

5 Concluding Remarks

This article showed that for any pair of time series A and B and any dissimilar function
mapping any pair of elements of A and B to an integer in {0, 1, . . . , c}, there exists a
sequence S of O(c|A||B|) integers such that the DTW distance between any contigu-
ous subsequence of A and any contiguous subsequence of B can be represented by the
banded LIS length of a contiguous subsequence of S. As applications of this reduction
of DTW to LIS, novel algorithms for three DTW-related problems, the circular, square
root, and periodic DTW distance problems, were presented utilizing the semi-local
sequence comparison technique of Tiskin [28] originally developed for LCS-related
problems.

Compared with the naive DP-based algorithms for the DTW-related problems, the
proposed algorithms run asymptotically faster but consumemore space. An immediate
question from this time-space trade-off is whether space-inefficiency of our algorithms
can be removed by reducing the required space from quadratic to linear. Another
question also comes from the quadratic length of the integer sequence representing
theDTWdistance by its LIS length.Due to this length, there is a gap between the size of
the permutation sequence used to solve the semi-local LCS and DTWproblems: linear
for LCS and quadratic for DTW. The fully-local LCS problem, answering queries of
an LCS between any given pair of contiguous subsequences, has an interesting trade-
off between space consumption and query times. That is, the DP algorithm finds
an LCS from scratch in quadratic time using linear space, while a quadratic-time
constructible data structure can support linear-time queries of an LCS [24]. Can we
have the same trade-off also on the fully-local DTWproblem? In other words, are there
any quadratic-space (or even quadratic-time constructible) data structures supporting
linear-timequeries of aDTWalignment between anypair of contiguous subsequences?
All the aforementioned questions could be resolved if one can find a way to apply the
semi-local LCS comparisons of Tiskin [28] more directly to the case of DTW, without
using a reduction to LIS. So far we have not been able to find such a method.
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